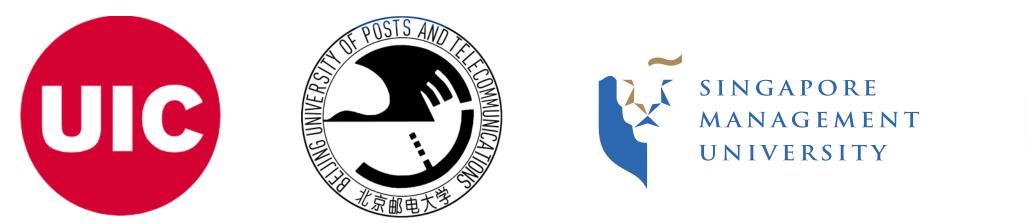


Towards Graph Foundation Models WWW 2024 Tutorial

Philip S. Yu, Chuan Shi, Cheng Yang, Yuan Fang, Lichao Sun



Towards Graph Foundation Models Part III: LLM & GNN+LLM Models

Presented by **Yuan Fang**, Singapore Management University <u>yfang@smu.edu.sg</u> | <u>www.yfang.site</u>

Prepared by Yuxia Wu, Singapore Management University

Outline

LLM based Models

- Backbone Architecutures
- ➢ Pre-training
- ➤ Adaptation
- GNN+LLM based Models
 - Backbone Architecutures
 - ➢ Pre-training
 - ➤ Adaptation
- □ Summary and outlook

LLM-based Models

Backbone Architecutures Pre-training

□ Adaptation

Model	Backbone Archi	tect	ıre	Pre-training	Adaptation
InstructGLM[157]	Graph-to-token	÷	Flan-T5/LLaMA	MLM,LM	Manual Prompt Tuning
LLMtoGraph[71]	Graph-to-text	+	GPTs, Vicuna	LM	Manual Prompt Tuning
NLGraph[126]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning
GraphText[175]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning
LLM4Mol[91]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning
GPT4Graph[<u>29]</u>	Graph-to-text	+	GPT-3	LM .	Manual Prompt Tuning + Automatic Prompt Tuning
	Completerer.	1	BERT, DeBERTa, Sentence-BERT, GPTs, III.aMA	<u></u>	Namakhman Alming-Astronic Scoren Illing

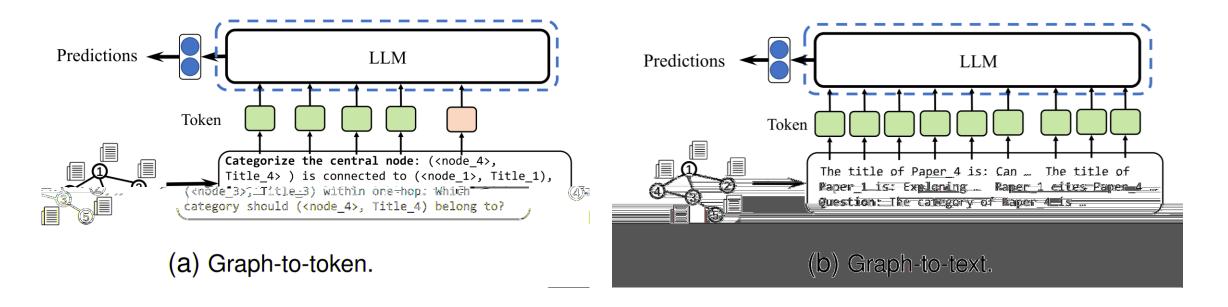
Backbone Architectures

Graph-to-Token

> Tokenize graph information to align it with LLM

Graph-to-text

Describe graph information using natural language

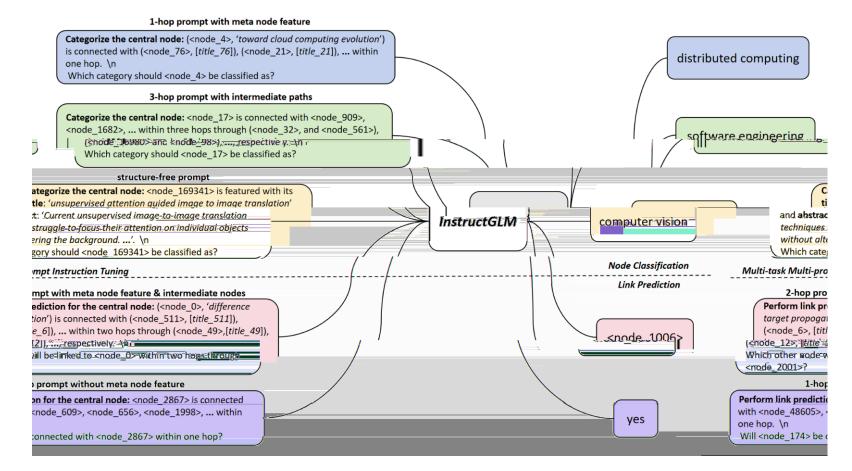


Graph-to-Token: GIMLET

□ Integrating graph data with textual data

Graph-to-Token: InstructGLM

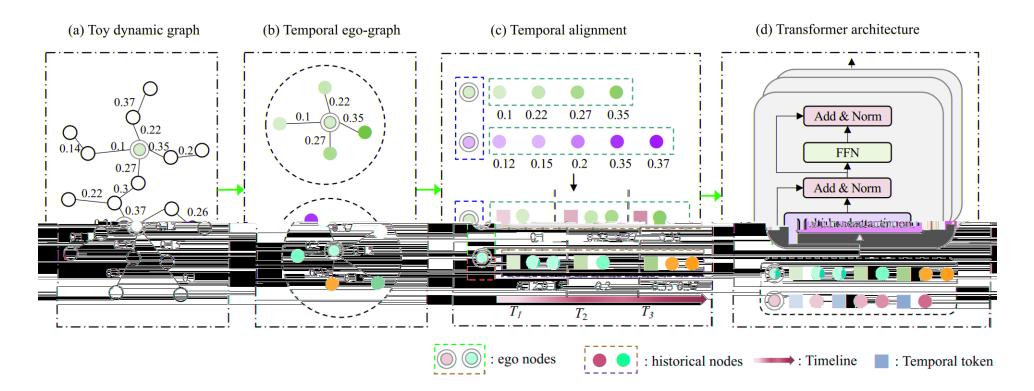
Expand the vocabulary of the LLM by graph node features



Ye, et al. "Language is all a graph needs." EACL 2024.

Graph-to-Token: SimpleDyG

Transformer-based approach for dynamic graphs Map a dynamic graph into a set of sequences



Wu, et al. "On the Feasibility of Simple Transformer for Dynamic Graph Modeling." WWW'24.

Graph-to-Token: SimpleDyG

Temporal ego-graph

$$w_i = \langle b, c, d, e \rangle$$

□ Temporal alignment:

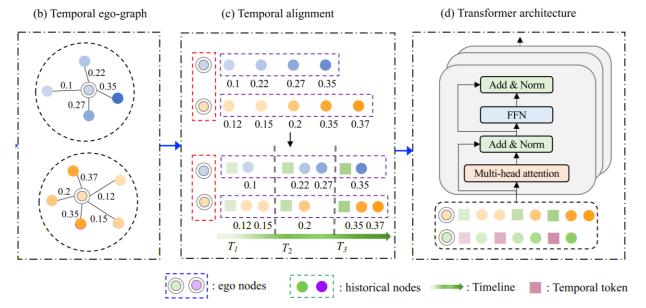
Segment the time domain:

 $S_i^1 = \langle b \rangle \ S_i^2 = \langle c, d \rangle \ S_i^3 = \langle e \rangle$

Sequence for Transformer:

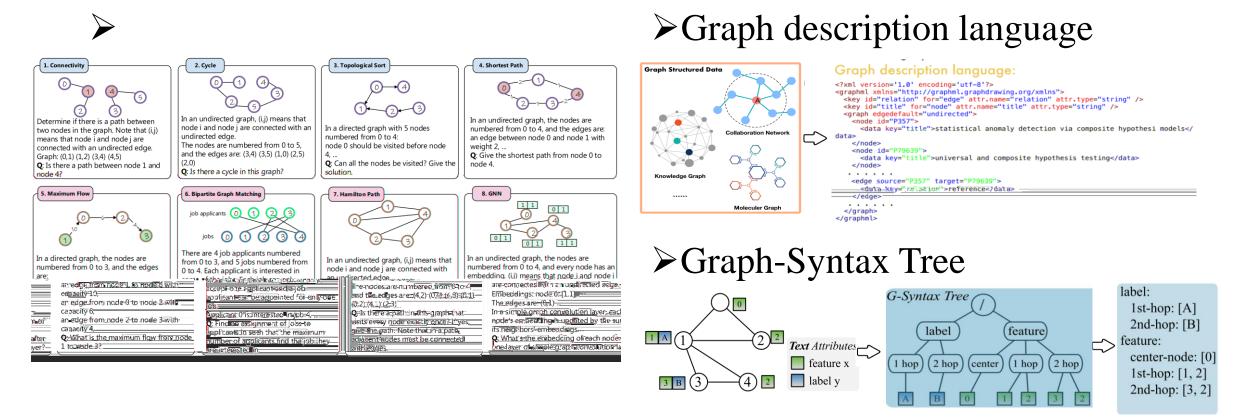
 $\begin{array}{l} x_i' = \langle |hist| \rangle, a, \langle |time1| \rangle, b, \langle |time2| \rangle, c, d, \langle |time3| \rangle, e, \langle |endofhist| \rangle \\ y_i' = \langle |pred| \rangle \langle |time4| \rangle S_i^4 \langle |endofpred| \rangle \end{array}$

Wu, et al. "On the Feasibility of Simple Transformer for Dynamic Graph Modeling." WWW'24.



Graph-to-text

Describe graph information for variours graphs and tasks



Wang, et al. "Can language models solve graph problems in natural language?."

Guo, et al. "GPT4Graph: Can large language models understand graph structured data? an empirical evaluation and benchmarking."

Zhao, et al. "GraphText: Graph reasoning in text space."

LLM-based Models

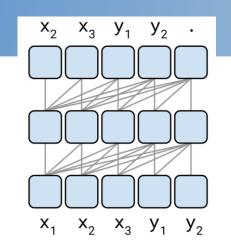
Backbone Architecutures Pre-training

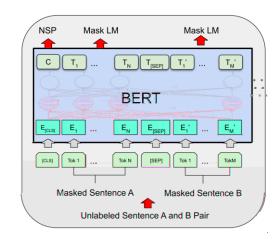
□ Adaptation

Model	Backbone Archi	tecti	ure	Pre-training	Adaptation
InstructGLM[157]	Graph-to-token	+	Flan-T5/LLaMA	MLM,LM	Manual Prompt Tuning
LLMtoGraph[71]	Graph-to-text	+	GPTs, Vicuna	LM	Manual Prompt Tuning
NLGraph[126]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning
GraphText[175]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning
LLM4Mol[91]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning
GPT4Graph[<u>29]</u>	Graph-to-text	+.	GPT-3	LM .	Manual Prompt Tuning + Automatic Prompt Tuning
	Com <u>hia</u> tate.	1	BERT, DeBERTa, Sentence-BERT, GPTs, III.aMA	<u></u>	Manakhment Thinng-Avanentia Strent Thinng

Table 3. Details of approaches involved as LLM based models

Pre-training





Touvron, et al. "Llama: Open and efficient foundation language models." *CoRR'23*. Ouyang, et al. "Training language models to follow instructions with human feedback." *NeurIPS'22*. Devlin, et al. "BERT: Pre-training of deep bidirectional transformers for language understanding." *CoRR'18*. Raffel, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." *JMLR'20*.

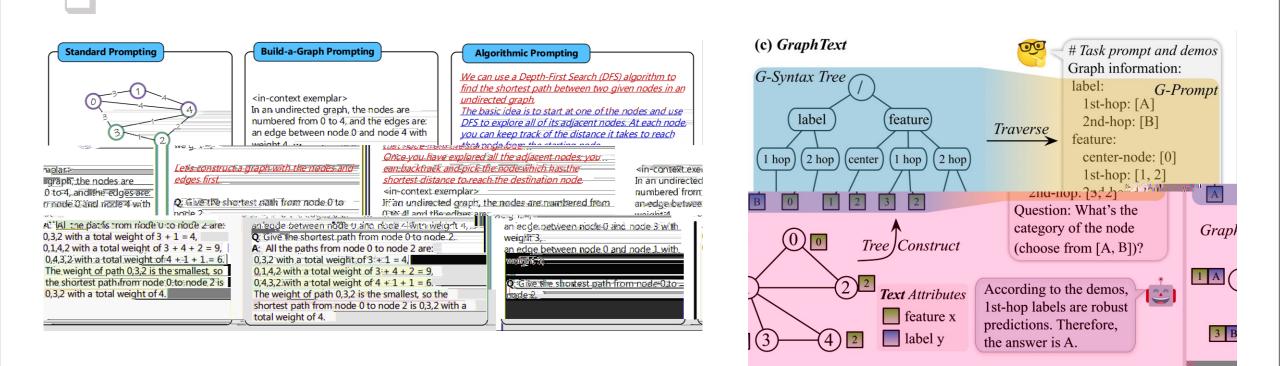
LLM-based Models

Backbone Architecutures Pre-training Adaptation

Model	Backbone Architecture			Pre-training	Adaptation
InstructGLM[157]	Graph-to-token	+	Flan-T5/LLaMA	MLM,LM	Manual Prompt Tuning
LLMtoGraph[71]	Graph-to-text	+	GPTs, Vicuna	LM	Manual Prompt Tuning
NLGraph[126]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning
GraphText[175]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning
LLM4Mol[91]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning
GPT4Graph[29]	Graph-to-text	+	GPT-3	LM .	Manual Prompt Tuning + Automatic Prompt Tuning
	Comptetete.	1	BERT, DeBERTa, Sentence-BERT, GPT8, III.aMA	<u>~~%))(&_)(&</u>	Manal Almont F. ninng-4-startic Screeni F. ninng

Table 3. Details of approaches involved as LLM based models

Adaptation

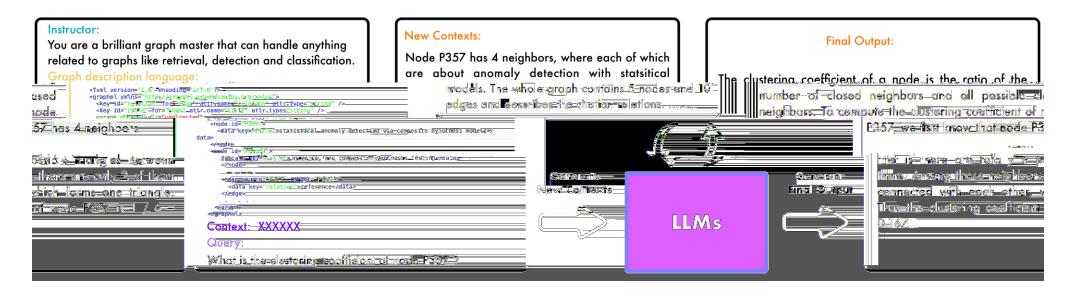


Wang, et al. "Can language models solve graph problems in natural language?." *NeurIPS*'23 Zhao, et al. "GraphText: Graph reasoning in text space."

Adaptation

□ Manual Prompting: Graph information, task descriptions

□ Automatic Prompting: LLMs → generate the context
 > Ask LLM generate graph/neighbor summarization



Guo, et al. "Gpt4graph: Can large language models understand graph structured data? an empirical evaluation and benchmarking." Chen, et al. "Exploring the potential of large language models (Ilms) in learning on graphs." ACM SIGKDD Explorations Newsletter 2024

Outline

 \triangleright

GNN+LLM based Models

Backbone Architecutures

□ Pre-training

□ Adaptation

Model	Backbone Architecture	Pre-training	Adaptation
SimTeG [16]	GNN-centric	MLM, TTCL	Parameter-Efficient FT
TAPE [35]	GNN-centric	LM	Tuning-free Prompting + Parameter-Efficient FT
GIANT [11]	GNN-centric	MLM	Vanilla FT
GraD [79]	GNN-centric	MLM	Parameter-Efficient FT
GALM [147]	GNN-centric	Graph Reconstruction	Vanilla FT
GraphFormer [153]	Symmetric	MLM	Vanilla FT
GLEM [174]	Symmetric	MLM	Vanilla FT
ConGrat [4]	Symmetric	MLM + GTCL	Parameter-Efficient FT
G2P2 [136]	Symmetric	GTCL	Prompt Tuning
SAFER [6]	Symmetric	MLM	Parameter-Efficient FT
Text2Mol [18]	Symmetric	MLM + GTCL	Parameter-Efficient FT
MoMu [109]	Symmetric	MLM + GTCL	Parameter-Efficient FT
MoleculeSTM [73]	Symmetric	MLM + GTCL	Parameter-Efficient FT
CLAMP [103]	Symmetric	MLM + GTCL	Parameter-Efficient FT
Graph-Toolformer [165]	LLM-centric	LM	Tuning-free Prompting + Vanilla FT

Table 4. Details of approaches involved as GNN+LLM based models

Backbone Architectures

GNN-centric Methods

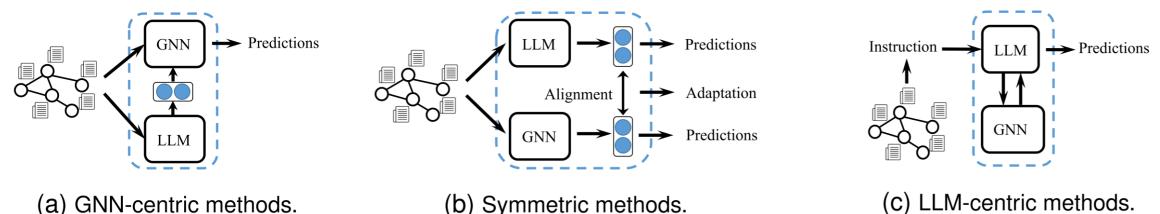
> LLMs extract node features from raw data; GNNs make predictions

U Symmetric Methods

> Align the embeddings of GNN and LLM

LLM-centric Methods

Utilize GNNs to enhance the performance of LLM



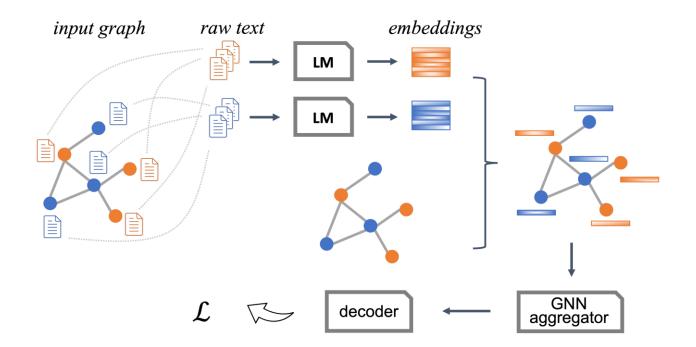
(a) GNN-centric methods.

(b) Symmetric methods.

GNN-centric Methods: GaLM

□ The backbone model:

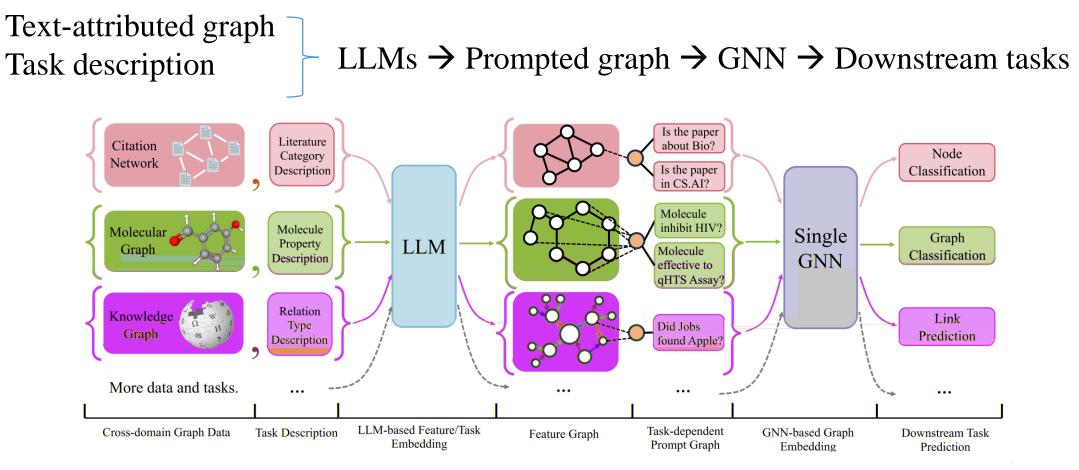
Raw text \rightarrow LMs \rightarrow GNN aggregator \rightarrow decoder



Xie, et al. "Graph-aware language model pre-training on a large graph corpus can help multiple graph applications."

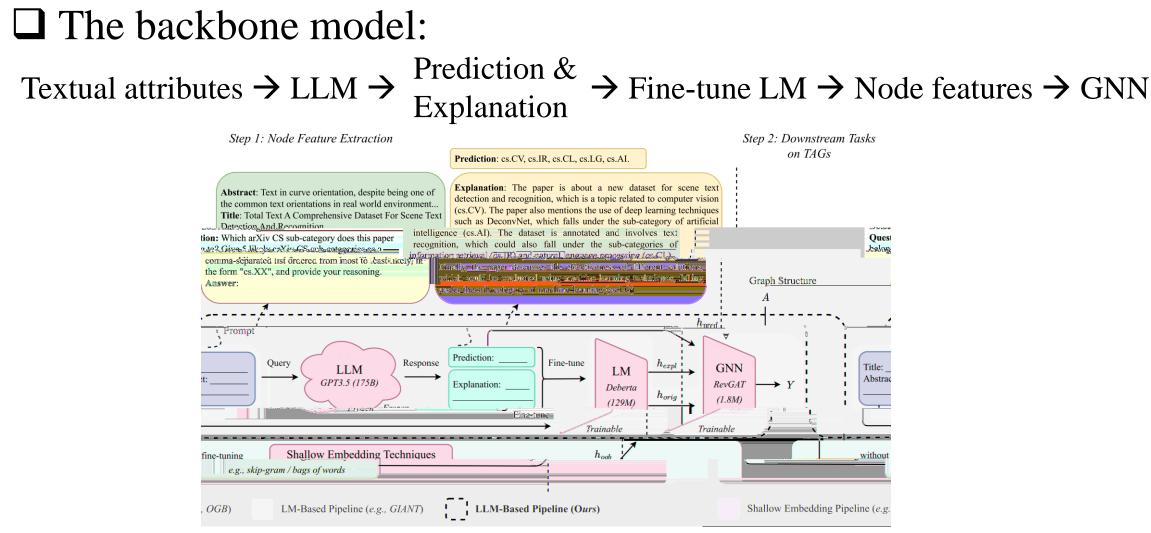
GNN-centric Methods: One for all

□ The backbone model:



Liu, et al. "One for all: Towards training one graph model for all classification tasks."

GNN-centric Methods: TAPE



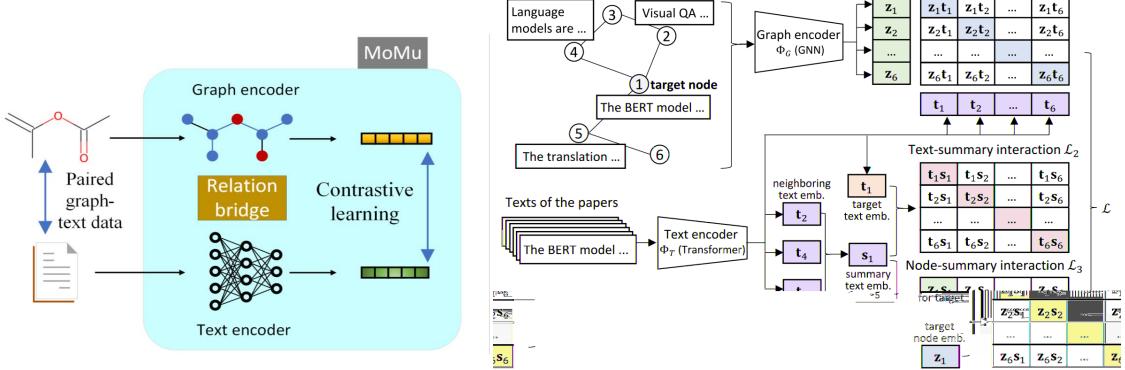
He, et al. "Harnessing explanations: LLM-to-LM interpreter for enhanced text-attributed graph representation learning."

Symmetric Methods: MoMu, G2P2

□ The backbone model:

Dual encoders: Graph & Text encoder

Contrastive Learning



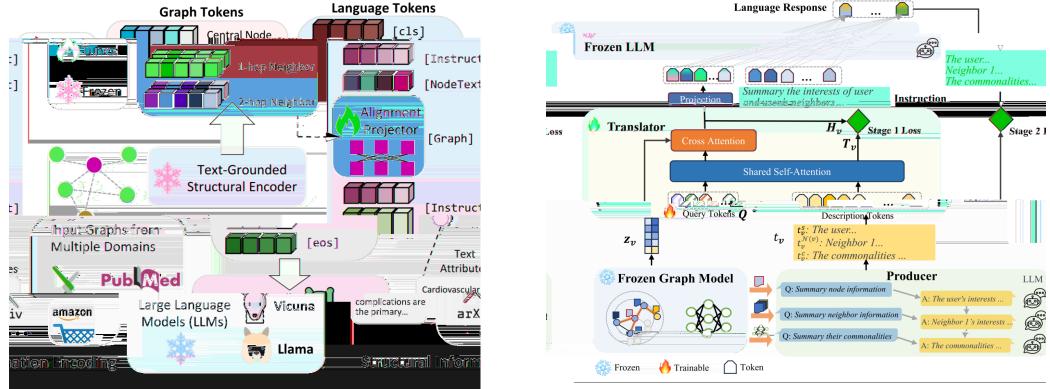
Papers grounded on a citation network

Su, et al. "A molecular multimodal foundation model associating molecule graphs with natural language." Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting."

Text-node interaction \mathcal{L}_1

LLM-centric Methods: GraphGPT, GraphTranslator

□ The backbone model: Graph → GNN → Projection → LLM



rang, et al. GraphGPT: Graph instruction tuning for large language models."

GNN+LLM based Models

Backbone Architecutures

Pre-training

□ Adaptation

Model	Backbone Architecture	Pre-training	Adaptation
SimTeG [16]	GNN-centric	MLM, TTCL	Parameter-Efficient FT
TAPE [35]	GNN-centric	LM	Tuning-free Prompting + Parameter-Efficient FT
GIANT [11]	GNN-centric	MLM	Vanilla FT
GraD [79]	GNN-centric	MLM	Parameter-Efficient FT
GALM [147]	GNN-centric	Graph Reconstruction	Vanilla FT
GraphFormer [153]	Symmetric	MLM	Vanilla FT
GLEM [174]	Symmetric	MLM	Vanilla FT
ConGrat [4]	Symmetric	MLM + GTCL	Parameter-Efficient FT
G2P2 [136]	Symmetric	GTCL	Prompt Tuning
SAFER [6]	Symmetric	MLM	Parameter-Efficient FT
Text2Mol [18]	Symmetric	MLM + GTCL	Parameter-Efficient FT
MoMu [109]	Symmetric	MLM + GTCL	Parameter-Efficient FT
MoleculeSTM [73]	Symmetric	MLM + GTCL	Parameter-Efficient FT
CLAMP [103]	Symmetric	MLM + GTCL	Parameter-Efficient FT
Graph-Toolformer [165]	LLM-centric	LM	Tuning-free Prompting + Vanilla FT

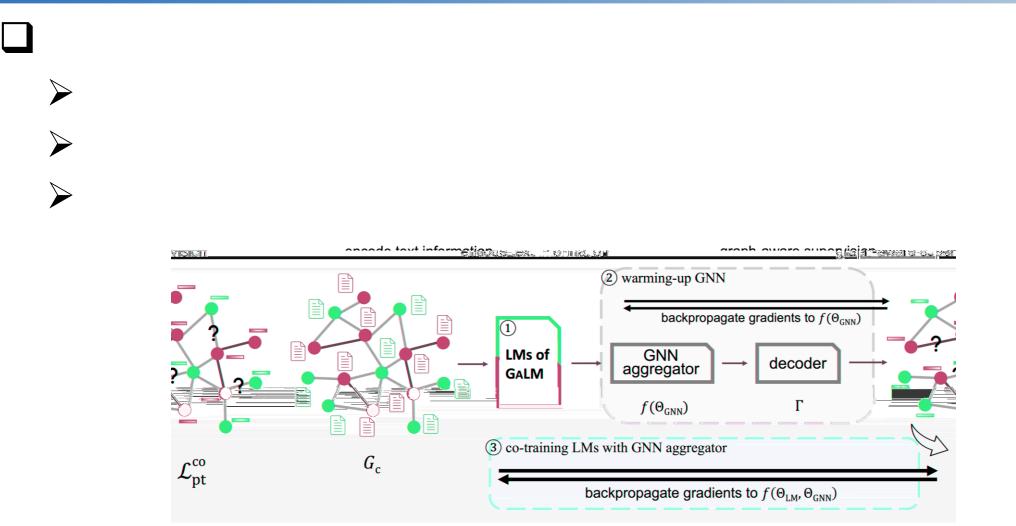
Table 4. Details of approaches involved as GNN+LLM based models

Pre-training

GNN or LLM-based

- Masked Language Modeling
- Language Modeling
- Text-Text Contrastive Learning
- Graph reconstruction
- □ Alignment-based
 - Graph-Text Contrastive Learning

GNN or LLM-based: GaLM

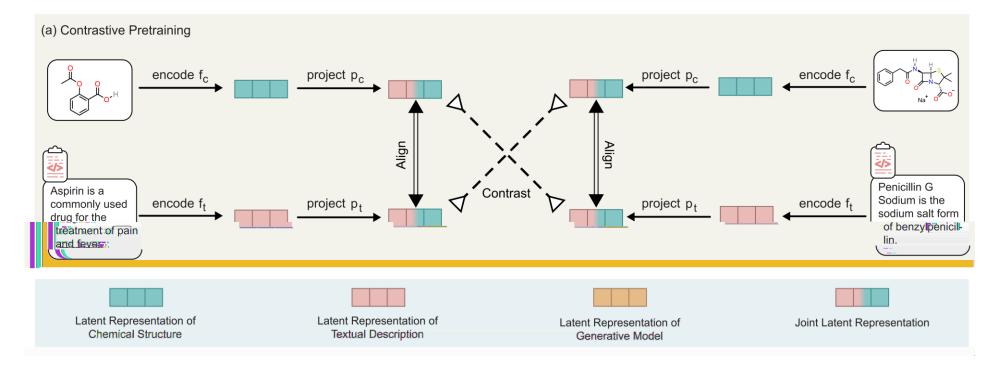


Xie, et al. "Graph-aware language model pre-training on a large graph corpus can help multiple graph applications."

Alignment-based: MoleculeSTM

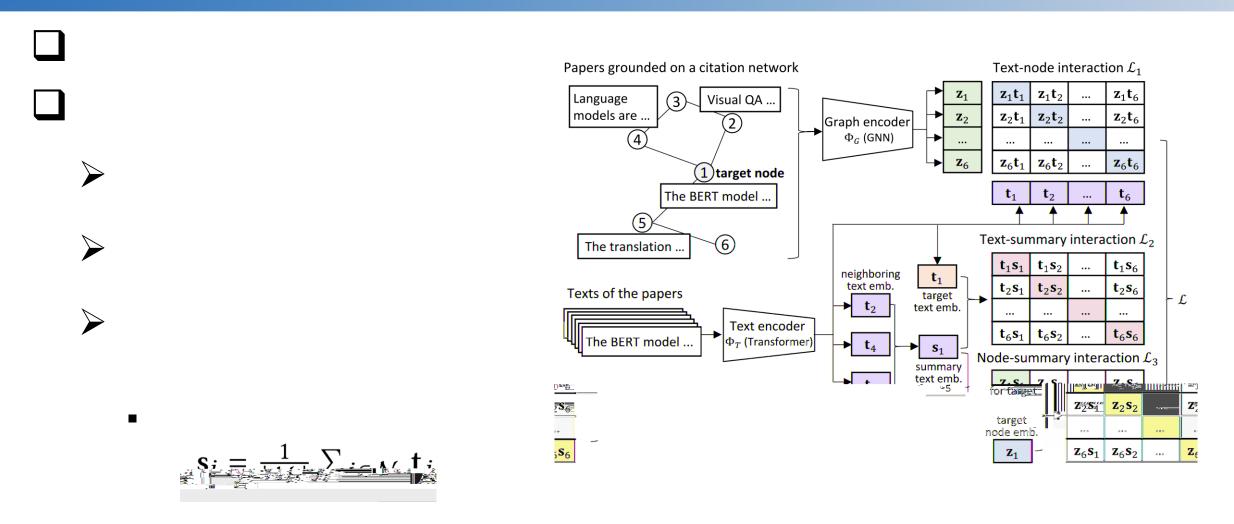
Graph-Text Contrastive Learning (GTCL)

➤ Map the graph and text representations extracted to a joint space using two projectors (p_c and p_t) via contrastive learning



Liu, et al. "Multi-modal molecule structure-text model for text-based retrieval and editing." Nature Machine Intelligence 2023

Alignment-based: G2P2



Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting."

GNN+LLM based Models

Backbone Architecutures

D Pre-training

Adaptation

Model	Backbone Architecture	Pre-training	Adaptation
SimTeG [16]	GNN-centric	MLM, TTCL	Parameter-Efficient FT
TAPE [35]	GNN-centric	LM	Tuning-free Prompting + Parameter-Efficient FT
GIANT [11]	GNN-centric	MLM	Vanilla FT
GraD [79]	GNN-centric	MLM	Parameter-Efficient FT
GALM [147]	GNN-centric	Graph Reconstruction	Vanilla FT
GraphFormer [153]	Symmetric	MLM	Vanilla FT
GLEM [174]	Symmetric	MLM	Vanilla FT
ConGrat [4]	Symmetric	MLM + GTCL	Parameter-Efficient FT
G2P2 [136]	Symmetric	GTCL	Prompt Tuning
SAFER [6]	Symmetric	MLM	Parameter-Efficient FT
Text2Mol [18]	Symmetric	MLM + GTCL	Parameter-Efficient FT
MoMu [109]	Symmetric	MLM + GTCL	Parameter-Efficient FT
MoleculeSTM [73]	Symmetric	MLM + GTCL	Parameter-Efficient FT
CLAMP [103]	Symmetric	MLM + GTCL	Parameter-Efficient FT
Graph-Toolformer [165]	LLM-centric	LM	Tuning-free Prompting + Vanilla FT

Table 4. Details of approaches involved as GNN+LLM based models

Adaptation

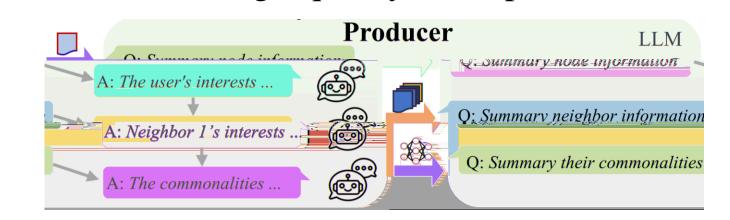
Given:

- ➤ Graph Model
- Large Language Model
- □ Tunable:
 - Producer Module
 - Construct alignment data
 - Translator Module
 - Convert node representations into tokens for LLM prediction

□ Producer:

- node information
- neighbor information
- commonalities

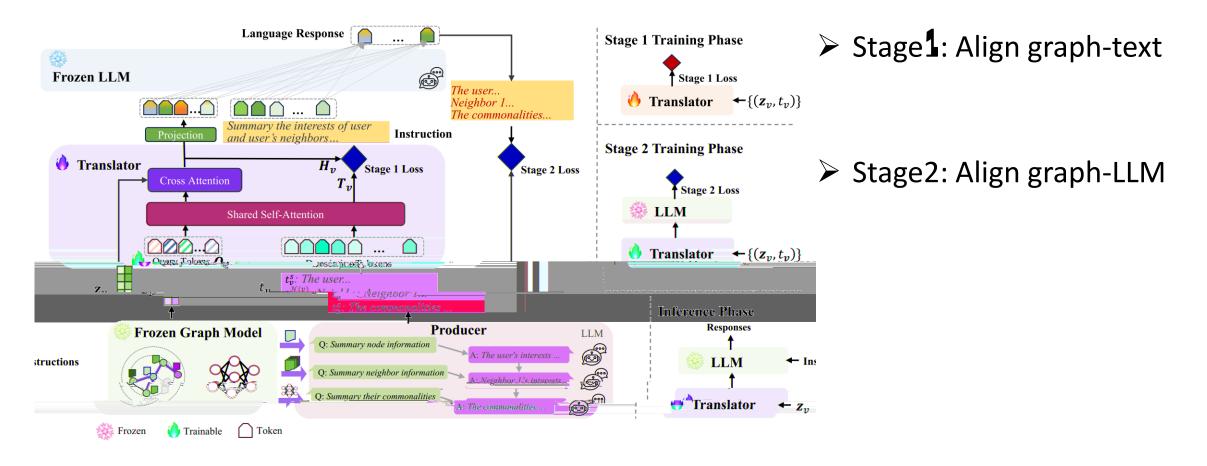
□ Prompt template:

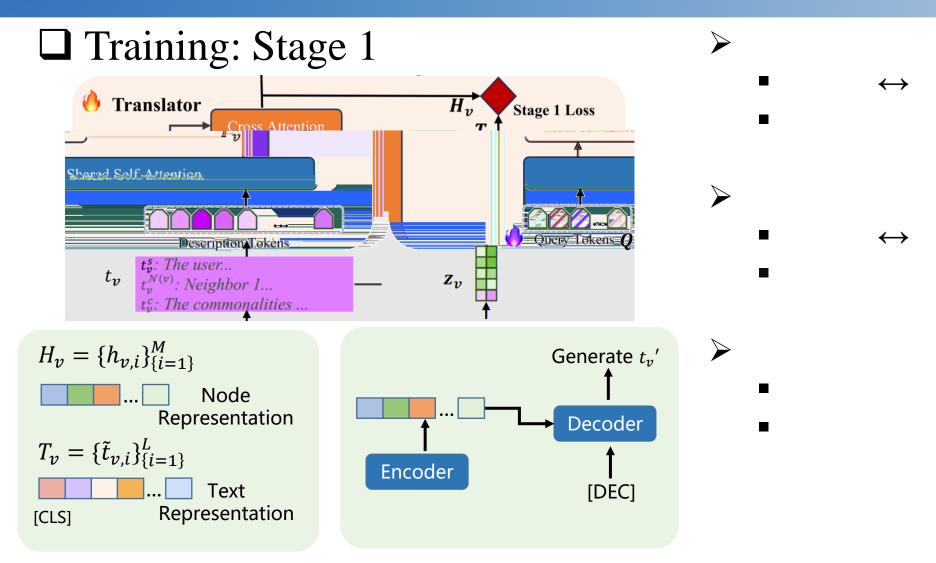


CoT) ->LLM->high-quality description

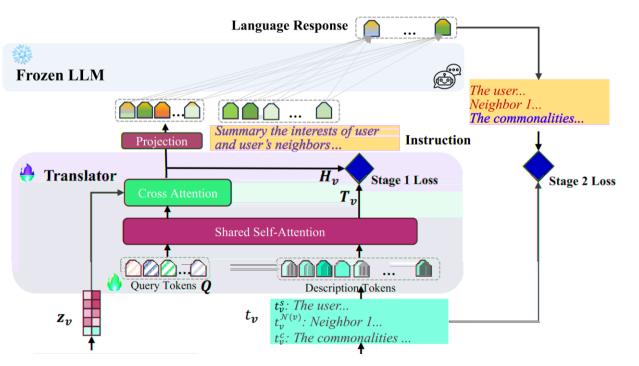
Dataset	Step	Prompt
	<u> </u>	User Behavior Description: < User Behavior Description >. Please summarize the characteristics of this user
Taobao	User behavior summary	according to the product behavior information. The answer format is: What kind of characteristics does the user have in terms of interests, hobbies, personality traits, and life needs
	Neighbor behavior summary	Neighbor Behavior Description: < <u>Neighbor Behavior Description</u> >. Please summarize most of the similarities that this user's friends have based on the product behavior information. The answer format is: What do several friends of this user have in common in interests, hobbies, personality traits, and life needs?

□ Training: Only fine-tune Translator and Projection





Training: Stage 2



- > Projection:
 - A linear layer: project H_v to token representation space of LLM

Concatenate:

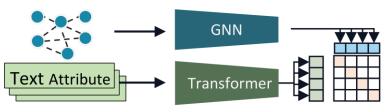
 Connect the projected representation with the human instruction and feed into LLM

Fine-tune Translator

 Alignn the response text of LLM with the actual descriptive text

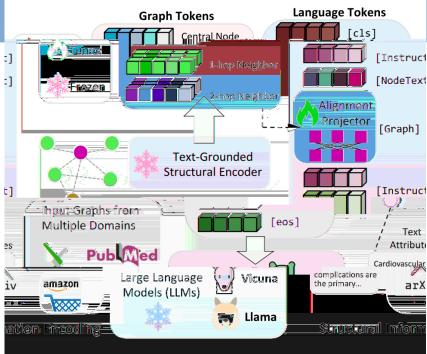
PEFT: GraphGPT

Graph: Text-Grounded Structural Encoder



□ Projector: Map graph representation to LLM -

□ Instruction Tuning: Only fine-tune projector

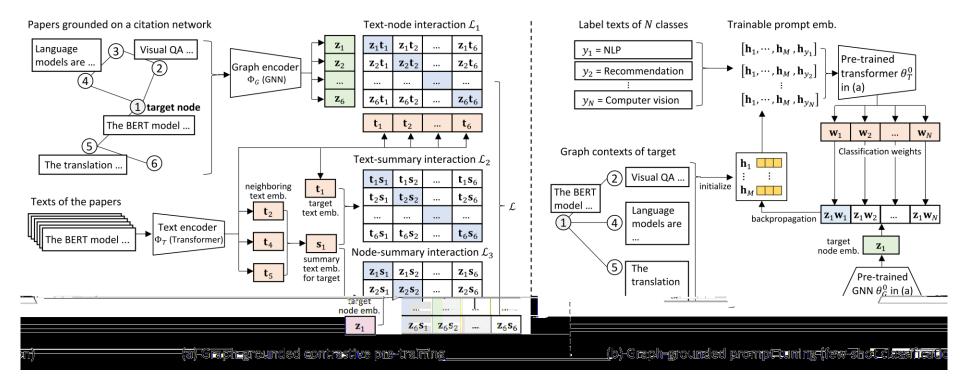


	Node: 68442, Edge index: [[src node],[dst node]], Node list: [] Graph Matching
2, please reorder the list of	papers according to the order of graph tokens:
	given graph tokens and the list of paper titles, we obtain the matching of graph tokens and papers: Graph token An met moder for filmed"systems: Graphiteken Analysis and the second state of the second second second second s
Note Classification - About act: Title:	Human Question: Given a citation graph: <graph> where the Oth-mode is the target paper, with the following in</graph>
s-likely to belong to cs.IT	Aussione Whiel and a standard and a second the paper is a second and the Restricted Isometry So <u>, it i</u> GraphGPT Response: cs.IT, cs.IG, cs.SP, cs.CV, cs.NA. The paper discusses the Restricted Isometry So <u>, it i</u>
Link Prediction	Graph Information: <graph>: Central Node 1: 8471, Edge index 1: [[src node],[dst node]], Node list 1: [] <graph>: Central Node 2: 19368, Edge index 2: [[src node],[dst node]], Node list 2: [.</graph></graph>
Abstract: Titile: and the other answer of "yes" or "no".	Human Question: Civen a sequence of graph tokens: <graph> that constitute a subgraph of a citation graph, sequence of graph tokens: <graph>, Abstract: Title:, are these two central nodes connected? Give me an GraphGPT Response: Yes, they are connected. Based on the first paper, And the second paper proposes</graph></graph>

Tang, et al. "GraphGPT: Graph instruction tuning for large language models."

Prompt-Tuning: G2P2

□ Learnable prompts: $[h_1, \dots h_M, h_{CLASS}]$ □ Tuning prompts with limited labeled data for efficient adaptation

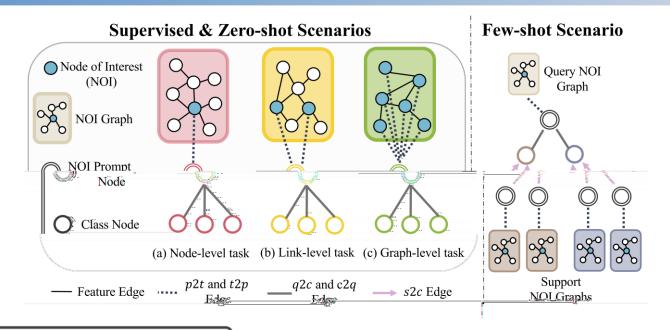


Wen, et al. "Augmenting low-resource text classification with graph-grounded pre-training and prompting."

Prompt-Tuning: One for all

□ NOI (Node of Interest):

- ➢ Node-level: node
- Link-level: node pair
- ➢ Graph-level: subgraph



NOI Prompt Node

Text feature of the NOI prompt node: Prompt node. < task description >...

Example: Prompt node. Graph classification on molecule properties.

Example: Prompt node. Node classification on the literature category of the paper.

Class Node

Text feature of class node: Prompt node. *<class description>*.

Example: Prompt node. Molecule property. The molecule is effective in: ...

Example Prompt node. I iterature Category of AI (Artificial Intelligence). Covers all great of

Allexes<u>pt Visia</u>i

Liu, et al. "One for all: Towards training one graph model for all classification tasks."

Outline

LLM based Models

- Backbone Architecutures
- ➢ Pre-training
- ➤ Adaptation
- GNN+LLM based Models
 - Backbone Architecutures
 - ➢ Pre-training
 - ➤ Adaptation

Summary and outlook

Summary and outlook

□ Summary

- Leveraging LLMs facilitates a unified approach to various graph tasks by describing them in natural language.
- Merging graph data, text, and other modalities into LLMs creates a promising path for graph foundation models.
- ➤ Combining GNNs and LLMs leads to improved performance in graph-related tasks.

Summary and outlook

Outlook

- \succ