

Towards Graph Foundation Models

Cheng Yang

yangcheng@bupt.edu.cn Beijing University of Posts and Telecommunications

Background

• Graph Foundation Model

• Our Recent Attempts

• Future Directions

• Background

• Graph Foundation Model

• Our Recent Attempts

• Future Directions

Foundation Models

"A foundation model is any model that is trained on broad data and can be adapted to a wide range of downstream tasks." [1]

Foundation models have become a reality in language, vision, and speech.

[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brun-skill, et al., "On the opportunities and risks of foundation models," arXiv preprint arXiv:2108.07258, 2021

Characteristics of Foundation Models

- Emergence suggests that as a foundation model scales up, it may spontaneously manifest novel capabilities. [2]
- Homogenization alludes to the model's versatility, enabling its deployment across diverse applications.



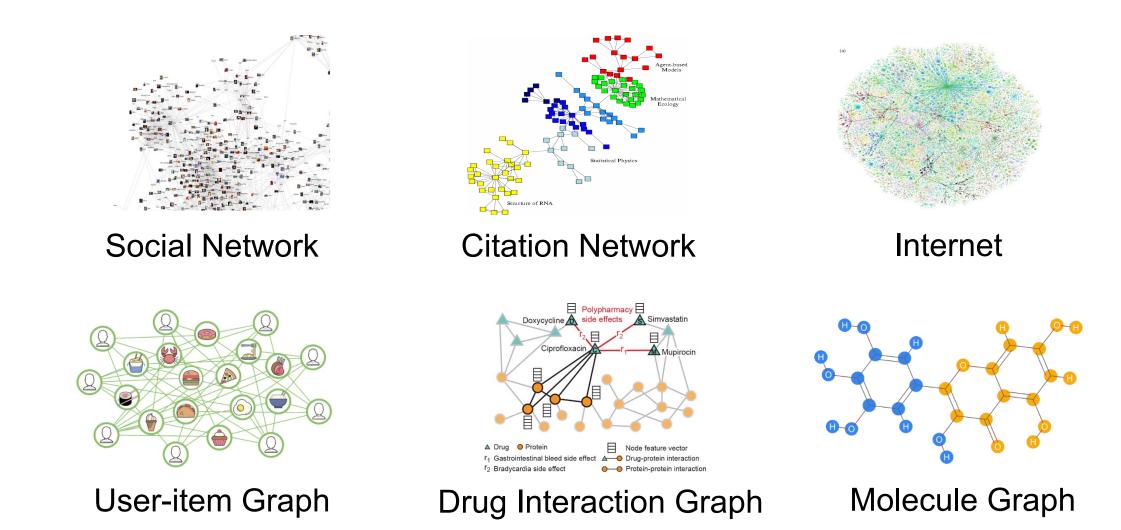
Emergence

Homogenization

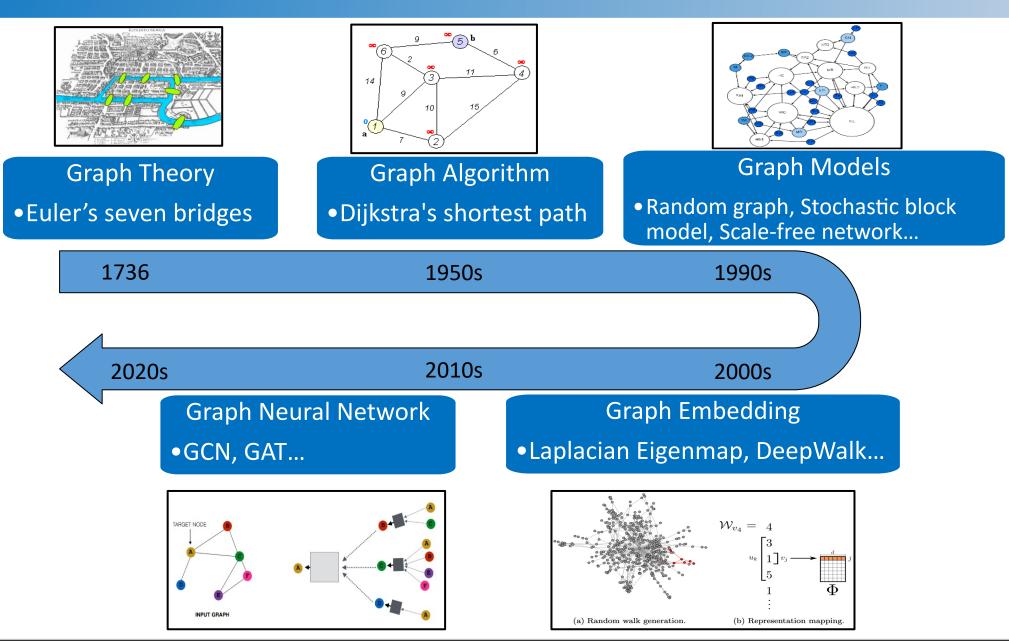
[2] Wei J, Tay Y, Bommasani R, et al. Emergent abilities of large language models[J]. arXiv preprint arXiv:2206.07682, 2022.

On the other hand...

Graph (network) is a common language for describing relational data.



A History of Graph Theory & Learning



Background

• Graph Foundation Model

• Our Recent Attempts

• Summary

What'll be the Next Paradigm of Graph Learning?

A survey discussing the potential future of graph learning

Towards Graph Foundation Models: A Survey and Beyond

Jiawei Liu*, Cheng Yang*, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, and Chuan Shi

Abstract—Emerging as fundamental building blocks for diverse artificial intelligence applications, foundation models have achieved notable success across natural language processing and many other domains. Parallelly, graph machine learning has witnessed a transformative shift, with shallow methods giving way to deep learning approaches. The emergence and homogenization capabilities of foundation models have piqued the interest of graph machine learning researchers, sparking discussions about developing the next graph learning paradigm that is pre-trained on broad graph data and can be adapted to a wide range of downstream graph tasks. However, there is currently no clear definition and systematic analysis for this type of work. In this article, we propose the concept of graph foundation models (GFMs), and provide the first comprehensive elucidation on their key characteristics and technologies. Following that, we categorize existing works towards GFMs into three categories based on their reliance on graph neural networks and large language models. Beyond providing a comprehensive overview of the current landscape of graph foundation models, this article also discusses potential research directions for this evolving field.

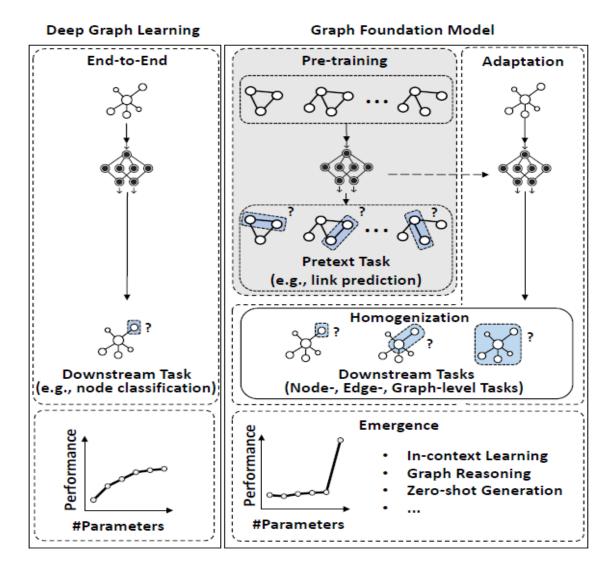
Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. Towards Graph Foundation Models: A Survey and Beyond. arXiv 2023

Graph Foundation Model (GFM)

A GFM is envisioned as a model pre-trained on extensive graph data, primed for adaptation across diverse downstream graph tasks.

Two expected characteristics:

- Emergence refers to novel capabilities shown exclusively in large-scale graph models.
- Homogenization denotes the adaptability across different types of graph tasks.



Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan Fang, Lichao Sun, Philip S. Yu, Chuan Shi. Towards Graph Foundation Models: A Survey and Beyond. arXiv 2023

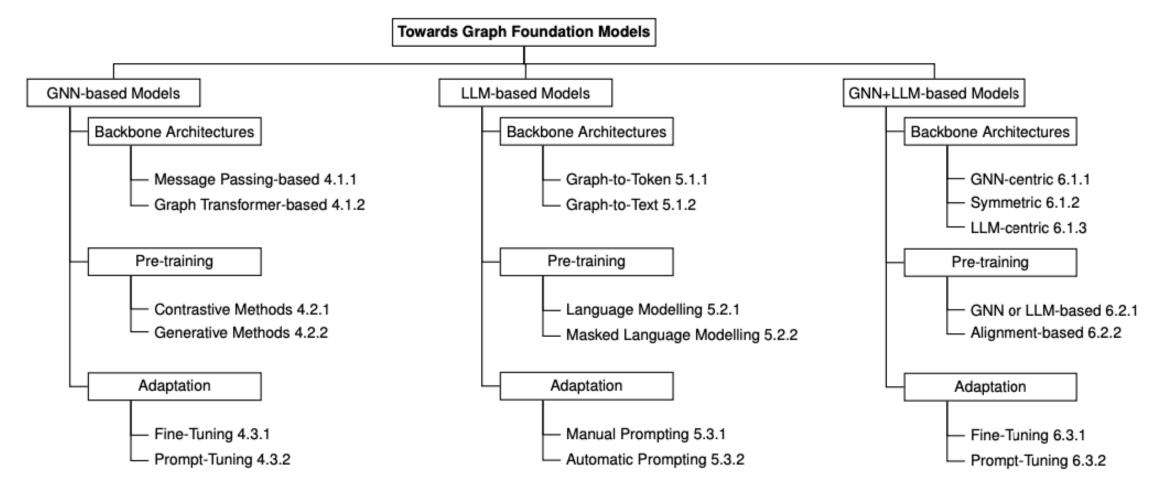
Relationship with Language Foundation Model

Similarities & Differences

		Language Foundation Model	Graph Foundation Model						
Similarities	Goal	Enhancing the model's expressive power and its generalization across various tasks							
ommunico	Paradigm	Pre-training and Adaptation							
Intrinsic differences	Data	Euclidean data (text)	Non-Euclidean data (graphs) or a mixture of Euclidean (e.g., graph attributes) and non-Euclidean data						
unterences	Task	Similar formats	Diverse formats						
	Backbone Architectures	Mostly based on Transformer	No unified architecture						
Extrinsic	Homogenization	Easy to homogenize	Difficult to homogenize						
differences	Domain Generalization	Strong generalization capability	Weak generalization across datasets						
	Emergence	Has demonstrated emergent abilities	No/unclear emergent abilities as of the time of writin						

Existing Work towards GFMs

No clear solution of how to build a GFM yet $\ensuremath{\mathfrak{S}}$ But there are some explorations towards it $\ensuremath{\mathfrak{S}}$



Idea: Improve existing graph learning through innovation in GNN

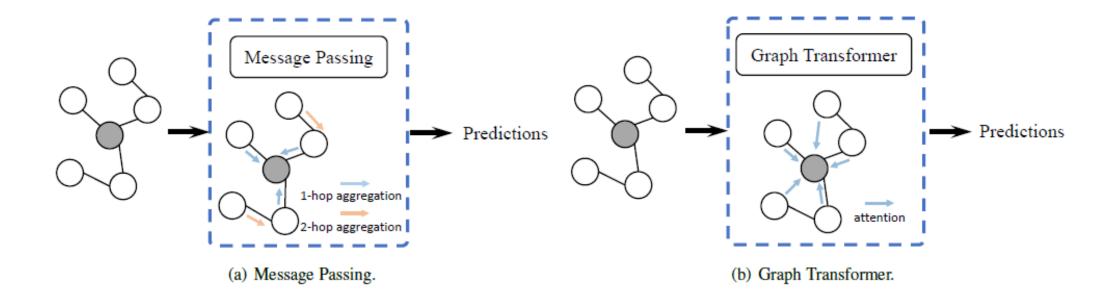
- Backbone
- Pre-training
- Adaptation

These works typically

- draw inspiration from the model architectures or training paradigms used in NLP
- do not explicitly model text data in their pipeline

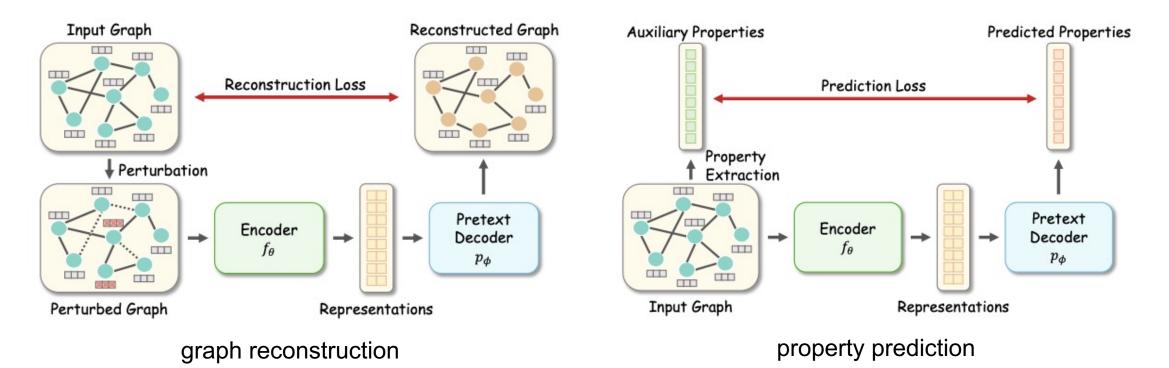
Backbone Architecture

- Message Passing
- Graph Transformer



Pre-training

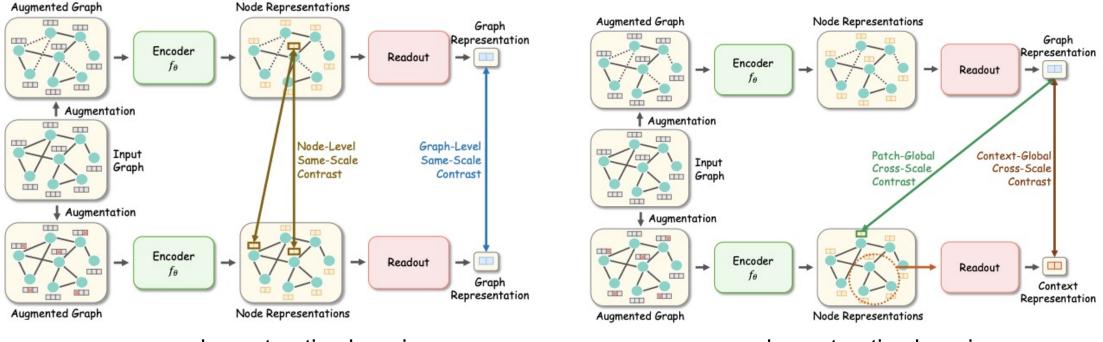
- Generative methods: graph reconstruction, property prediction
- Contrastive methods: same-scale contrastive learning, cross-scale contrastive learning



Liu Y, Jin M, Pan S, et al. Graph self-supervised learning: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(6): 5879-5900.

Pre-training

- Generative methods: graph reconstruction, property prediction
- Contrastive methods: same-scale contrastive learning, cross-scale contrastive learning



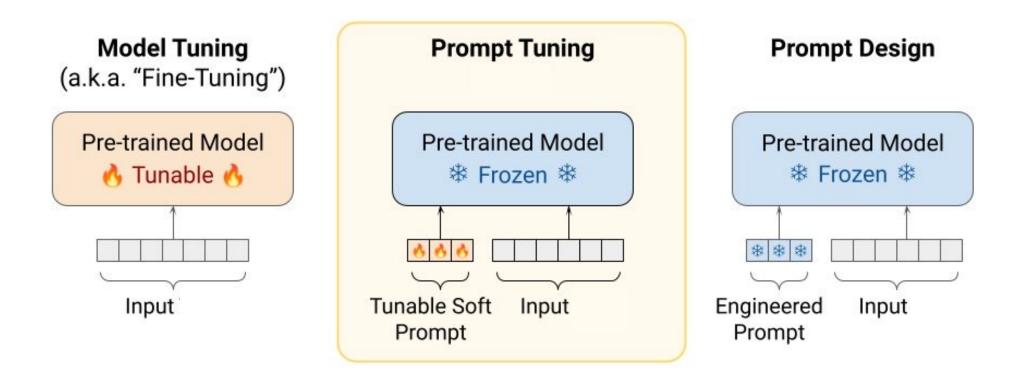
same-scale contrastive learning

cross-scale contrastive learning

Liu Y, Jin M, Pan S, et al. Graph self-supervised learning: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(6): 5879-5900.

Adaptation

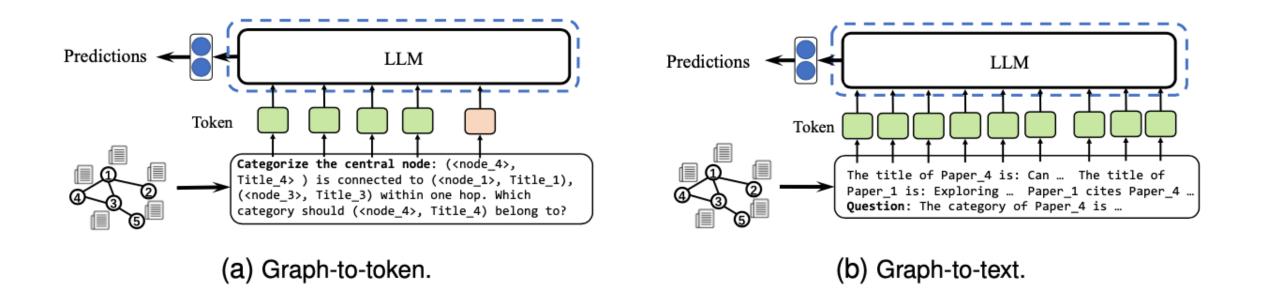
- Fine-tuning: keep input graph intact, modify model parameters accordingly
- Prompt-tuning: keep pre-trained model intact, modify input graph instead



LLM-based Models

Idea: Exploring the feasibility of using LLMs as GFMs by serializing graphs

- Graph-to-token: describe graph structure with token sequence
- Graph-to-text: describe graph information with natural language



LLM-based Models

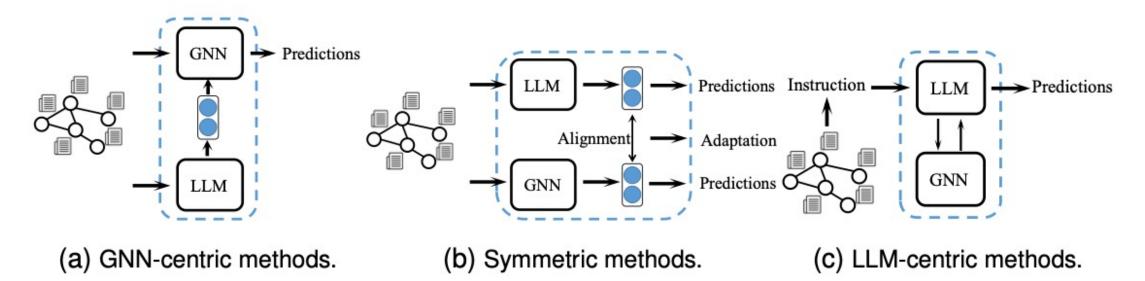
Brief Summary of Existing Work

- Backbone: BERT, T5, LLaMa, GPTs...
- Pre-training: Language Model (LM), Masked Language Model (MLM)
- Adaptation: Manual Prompt Tuning, Automatic Prompt Tuning

Model	Backbone Archi	tect	ure	Pre-training	Adaptation		
InstructGLM[157]	Graph-to-token	+	Flan-T5/LLaMA	MLM,LM	Manual Prompt Tuning		
LLMtoGraph[71]	Graph-to-text	+	GPTs, Vicuna	LM	Manual Prompt Tuning		
NLGraph[126]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning		
GraphText[175]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning		
LLM4Mol[91]	Graph-to-text	+	GPTs	LM	Manual Prompt Tuning		
GPT4Graph[29]	Graph-to-text	+	GPT-3	LM	Manual Prompt Tuning + Automatic Prompt Tuning		
Graph-LLM[9]	Graph-to-text	+	BERT, DeBERTa, Sentence-BERT, GPTs, LLaMA	MLM,LM	Manual Prompt Tuning + Automatic Prompt Tuning		

Idea: Harness the strengths of both language understanding from LLMs and structural analysis from GNNs

- GNN-centric: utilize LLMs to extract features from raw data and predict with GNNs
- Symmetric: align the embeddings of GNNs and LLMs to make better predictions
- LLM-centric: utilize GNNs as tools to enhance the performance of LLM



GNN+LLM-based Models

Brief Summary of Existing Work

- Backbone: GNN-centric, Symmetric, LLM-centric
- Pre-training: LM, MLM, Graph-Text Contrastive Learning (GTCL)...
- Adaptation: (Parameter-Efficient) Fine-tuning, Tuning-free Prompting, Prompt Tuning

Model	Backbone Architecture	Pre-training	Adaptation
SimTeG [16]	GNN-centric	MLM, TTCL	Parameter-Efficient FT
TAPE [35]	GNN-centric	LM	Tuning-free Prompting + Parameter-Efficient FT
GIANT [11]	GNN-centric	MLM	Vanilla FT
GraD [79]	GNN-centric	MLM	Parameter-Efficient FT
GraphFormer [153]	Symmetric	MLM	Vanilla FT
GLEM [174]	Symmetric	MLM	Vanilla FT
ConGrat [4]	Symmetric	MLM + GTCL	Parameter-Efficient FT
G2P2 [136]	Symmetric	GTCL	Prompt Tuning
SAFER [6]	Symmetric	MLM	Parameter-Efficient FT
Text2Mol [18]	Symmetric	MLM + GTCL	Parameter-Efficient FT
MoMu [109]	Symmetric	MLM + GTCL	Parameter-Efficient FT
MoleculeSTM [73]	Symmetric	MLM + GTCL	Parameter-Efficient FT
CLAMP [103]	Symmetric	MLM + GTCL	Parameter-Efficient FT
Graph-Toolformer [165]	LLM-centric	LM	Tuning-free Prompting + Vanilla FT

• Background

• Graph Foundation Model

• Our Recent Attempts

• Future Directions

Our Recent Attempts

- MA-GCL: Model Augmentation Tricks for Graph Contrastive Learning (MA-GCL, AAAI 2023)
- A Data-centric Framework to Endow Graph Neural Networks with Out-Of-Distribution Detection Ability (AAGOD, KDD 2023)
- GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks (GraphTranslator, WWW 2024)

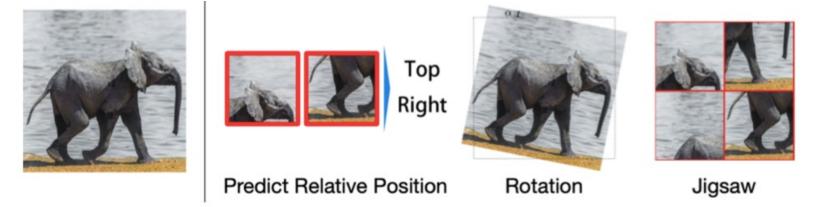
Xumeng Gong, Cheng Yang, Chuan Shi. MA-GCL: Model Augmentation Tricks for Graph Contrastive Learning. AAAI 2023 Yuxin Guo, Cheng Yang, Yuluo Chen, Jixi Liu, Chuan Shi, Junping Du. A Data-centric Framework to Endow Graph Neural Networks with Out-Of-Distribution Detection Ability. KDD 2023 Mengmei Zhang, Mingwei Sun, Peng Wang, Shen Fan, Yanhu Mo, Xiaoxiao Xu, Hong Liu, Cheng Yang, Chuan Shi. GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks. WWW 2024

Motivation of MA-GCL

Motivation

- Contrastive learning captures invariant information among different augmentation views.
- Good augmentations should introduce as much perturbation as possible without changing

the core semantics.



• However, in graph contrastive learning (GCL), we have few prior knowledge on how to generate such good augmentations.

Can we generate better augmentations than typical random dropping-based methods?

MAGCL

Core idea

- We interpret a GNN as a sequence of propagation operator *g* and transformation operator *h*:
 - propagation operator g is typically the non-parametric graph filter.
 - transformation operator *h* is typically a weight matrix with a non-linear function.

$$g(\boldsymbol{Z};\boldsymbol{F}) = \boldsymbol{F}\boldsymbol{Z}, \ h(\boldsymbol{Z};\boldsymbol{W}) = \sigma(\boldsymbol{Z}\boldsymbol{W}), \qquad \boldsymbol{F} = \boldsymbol{D}^{-\frac{1}{2}}\boldsymbol{A}\boldsymbol{D}^{-\frac{1}{2}}$$
$$GCN(\boldsymbol{X}) = h_L \circ g \circ h_{L-1} \circ g \circ \cdots \circ h_1 \circ g(\boldsymbol{X}),$$
$$SGC(\boldsymbol{X}) = h \circ g^{[L]}(\boldsymbol{X}),$$

- Intuition: different architectures (i.e., operator sequences) won't affect the core semantics.
- Thus we perturb the neural architecture of graph encoder as model augmentations.

MAGCL

We propose three strategies to introduce perturbations:

- Asymmetric strategy
 - Use the same number of operator *h* with shared parameters for different views
 - Use different numbers of operator *g* for different views
- Random strategy
 - Randomly vary the number of propagation operator *g* in every training epoch
- Shuffling strategy
 - Randomly shuffle the permutation of propagation and transformation operators

Experiments

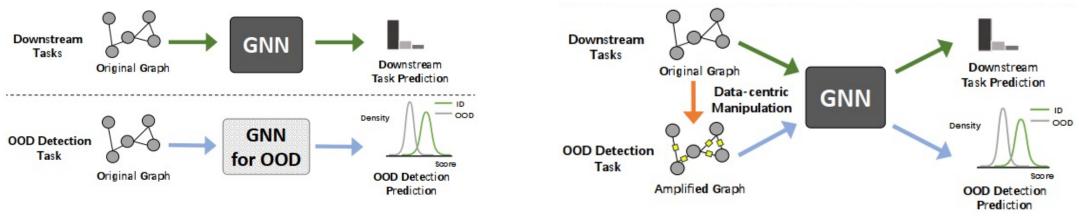
We conducted extensive experiments on node/graph classification/clustering.

Datasets	Cora	CiteSeer	PubMed	Coauthor-CS	Amazon-C	Amazon-P	Avg. Acc.	Avg. Rank
GCN	82.5 ± 0.4	71.2 ± 0.3	79.2 ± 0.3	93.03 ± 0.3	86.51 ± 0.5	92.42 ± 0.2		
GAT	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3	92.31 ± 0.2	86.93 ± 0.3	92.56 ± 0.4	-	-
InfoGCL	83.5 ± 0.3	73.5 ± 0.4	79.1 ± 0.2	-	-	-		
DGI	82.3 ± 0.6	71.8 ± 0.7	76.8 ± 0.3	92.15 ± 0.6	83.95 ± 0.5	91.61 ± 0.2	83.10	8.5
GRACE	81.7 ± 0.4	71.5 ± 0.5	80.7 ± 0.4	92.93 ± 0.0	87.46 ± 0.2	92.15 ± 0.2	84.44	6.5
MVGRL	83.4 ± 0.3	73.0 ± 0.3	80.1 ± 0.6	92.11 ± 0.1	87.52 ± 0.1	91.74 ± 0.0	84.63	6.5
BGRL	81.7 ± 0.5	72.1 ± 0.5	80.2 ± 0.4	93.01 ± 0.2	88.23 ± 0.3	92.57 ± 0.3	84.63	6.5
GCA	83.4 ± 0.3	72.3 ± 0.1	80.2 ± 0.4	93.10 ± 0.0	87.85 ± 0.3	92.53 ± 0.2	84.89	4.0
SimGRACE	77.3 ± 0.1	71.4 ± 0.1	78.3 ± 0.3	93.45 ± 0.4	86.04 ± 0.2	91.39 ± 0.4	82.98	8.5
COLES	81.2 ± 0.4	71.5 ± 0.2	80.4 ± 0.7	92.65 ± 0.1	79.64 ± 0.0	89.00 ± 0.5	82.40	8.8
ARIEL	82.5 ± 0.1	72.2 ± 0.2	80.5 ± 0.3	93.35 ± 0.0	88.27 ± 0.2	91.43 ± 0.2	84.71	4.8
CCA-SSG	83.9 ± 0.4	73.1 ± 0.3	$\underline{81.3 \pm 0.4}$	93.37 ± 0.2	$\underline{88.42 \pm 0.3}$	92.44 ± 0.1	85.42	<u>2.3</u>
Base Model	81.1 ± 0.4	71.4 ± 0.1	79.1 ± 0.4	92.86 ± 0.3	87.65 ± 0.2	91.19 ± 0.3	83.88	9.0
MA-GCL	83.3 ± 0.4	73.6 ± 0.1	83.5 ± 0.4	94.19 ± 0.1	$\textbf{88.83} \pm \textbf{0.3}$	93.80 ± 0.1	86.20	1.2

Motivation

- A reliable GNN should not only perform well on know samples (ID) but also identify graphs it has not been exposed to before (OOD).
- Existing works proposes to train a neural network specialized for the OOD detection task.

Can we build a graph prompt that can solve OOD detection given a well-trained GNN?

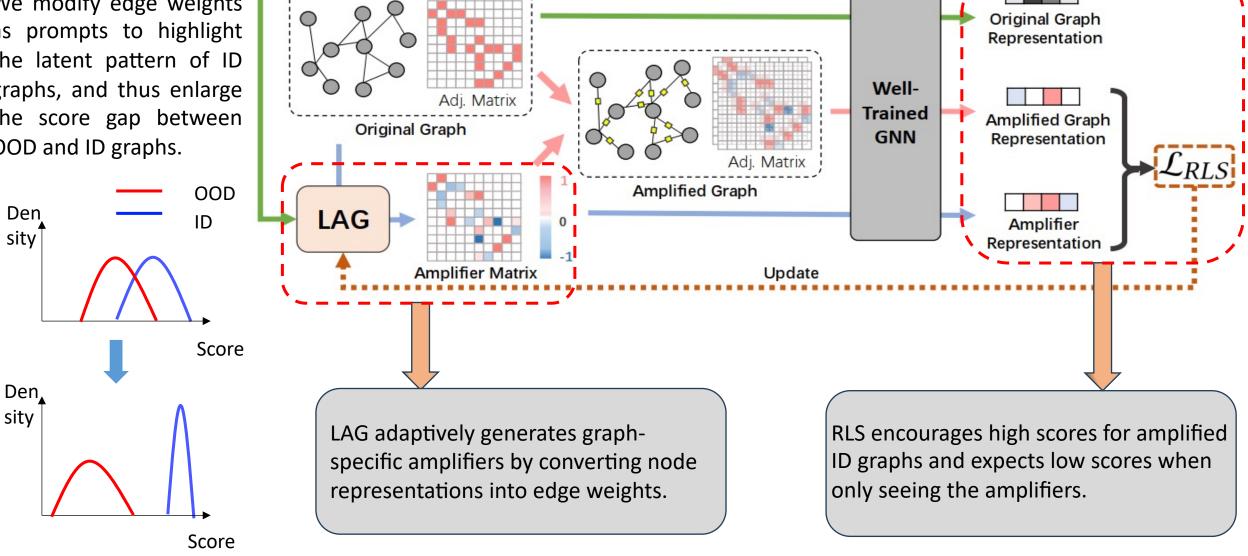


(1) Traditional works

(2) Our proposed framework

AAGOD

We modify edge weights as prompts to highlight the latent pattern of ID graphs, and thus enlarge the score gap between OOD and ID graphs.



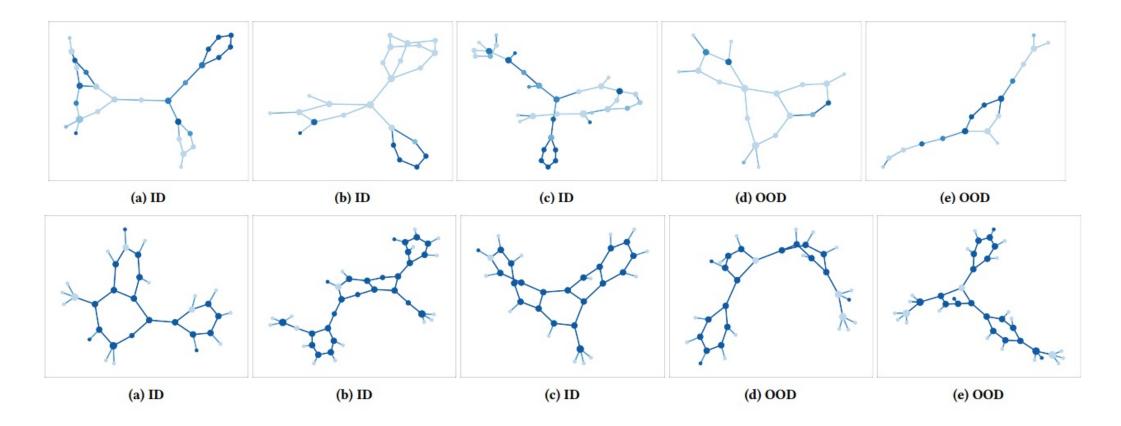
Experiments

We conducted experiments on five dataset pairs over four GNNs to verify performance.

	2012/02/2012/02/02/2012		41222201023		/>									
ID	OOD	Metric	GCLS	GCL _S +	Improv.	GCLL	GCL _L +	Improv.	JOAO _S	JOAO _S +	Improv.	JOAO _L	JOAO _L +	Improv.
ENZYMES		AUC ↑	62.97	73.76	+17.14%	62.56	67.15	+7.34%	61.20	74.19	+21.23%	59.68	65.11	+9.10%
	PROTEIN	AUPR ↑	62.47	75.27	+20.49%	65.45	65.18	-0.41%	61.30	77.10	+25.77%	64.16	64.49	+0.51%
		FPR95↓	93.33	88.33	-5.36%	93.30	85.00	-8.90%	90.00	81.67	-9.26%	96.67	85.00	-12.07%
		AUC ↑	80.52	83.84	+4.12%	61.08	68.64	+12.38%	80.40	82.80	+2.99%	48.25	64.32	+33.31%
IMDBM	IMDBB	AUPR ↑	74.43	80.16	+7.70%	59.52	68.03	+14.30%	74.70	77.77	+4.11%	47.88	61.62	+28.70%
		FPR95↓	38.67	38.33	-0.88%	96.67	91.33	-5.52%	44.70	42.00	-6.04%	98.00	94.00	-4.08%
		AUC ↑	75.00	97.31	+29.75%	34.69	65.00	+87.37%	80.00	95.25	+19.06%	41.80	65.62	+56.99%
BZR	COX2	AUPR ↑	62.41	97.17	+55.70%	39.07	62.89	+60.97%	67.10	94.34	+40.60%	56.70	67.22	+18.55%
		FPR95↓	47.50	15.00	-68.42%	92.50	80.00	-13.51%	37.50	12.50	-66.67%	97.50	97.50	0.00%
		AUC ↑	68.04	71.27	+4.75%	53.44	58.25	+9.00%	53.46	69.39	+29.80%	53.64	55.67	+3.78%
TOX21	SIDER	AUPR ↑	69.28	73.52	+6.12%	56.81	59.58	+4.88%	56.02	71.01	+26.76%	56.02	56.02	0.00%
		FPR95↓	90.42	89.53	-0.98%	94.25	92.72	-1.62%	95.66	90.55	-5.34%	95.66	89.66	-6.27%
BBBP	BACE	AUC ↑	77.07	80.64	+4.63%	46.74	50.53	+8.11%	75.48	78.54	+4.05%	43.96	51.28	+16.65%
		AUPR ↑	68.41	72.60	+6.12%	45.35	46.49	+2.51%	69.32	74.06	+6.84%	44.77	48.32	+7.93%
		FPR95 \downarrow	71.92	60.59	-15.75%	92.12	86.70	-5.88%	76.85	69.46	-9.62%	94.09	92.61	-1.57%
								·/			\			·

Experiments

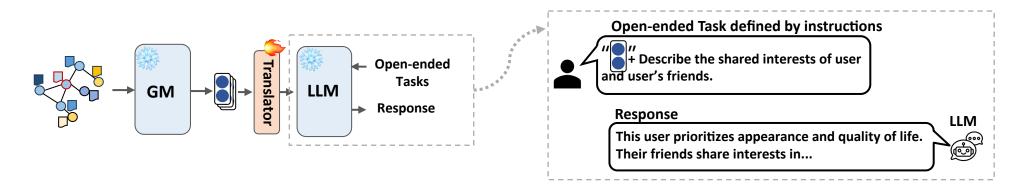
Case study: We visualize the learned graph prompts (i.e., amplifiers) for interpretability analysis.



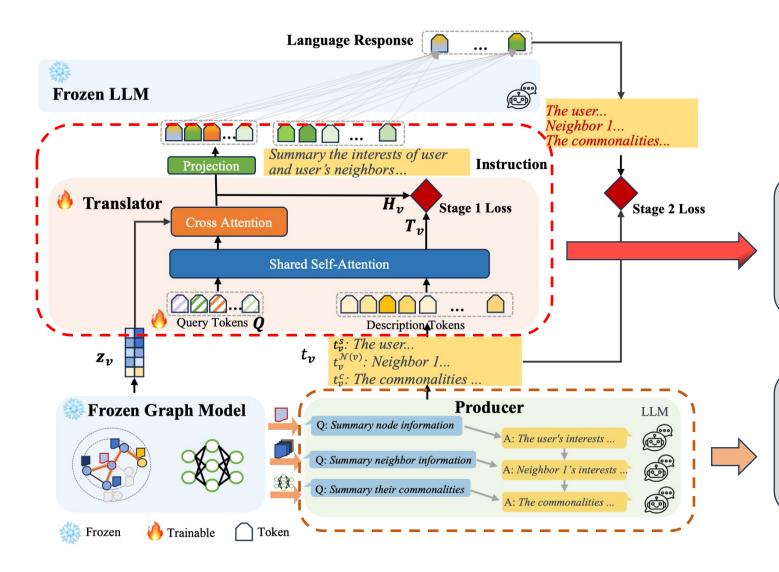
Motivation

- LLMs showcase impressive emergent abilities for open-ended tasks based on instructions, but struggle with processing complex graph data.
- Graph models (GMs) are often designed for encoding graph data into embeddings, while LLMs fail to directly process these embeddings.

Can we build a model that can bridge the gap between GM and LLM for open-ended tasks?



GraphTranslator



We propose a novel framework to align graph models (GMs) to LLM, named **GraphTranslator.**

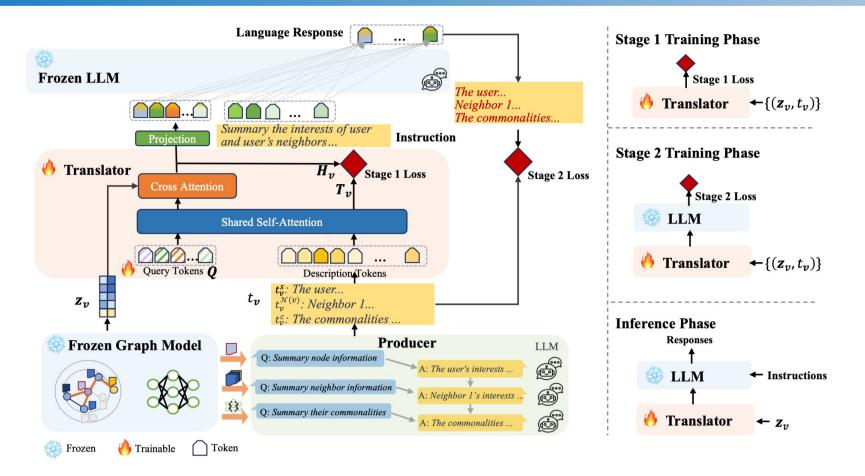
Translator

Translator aims to align GM and LLM by converting the learned node embedding into token representations.

Producer

We employ LLM to construct highquality description text with Chain-of-Thought (COT).

GraphTranslator



Stage 1: We obtain text embeddings with translator, then we train the translator through contrastive learning

□ Stage 2: We use a linear layer to project the output of Translator module into the same dimension with the word embedding of LLM

Experiments

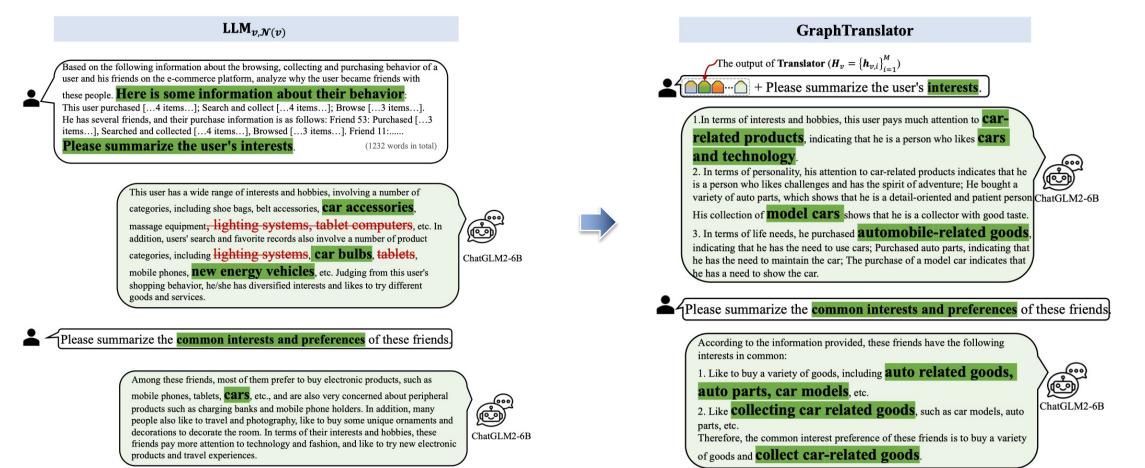
We conducted experiments on the Taobao and ArXiv datasets in zero-shot scenario.

Dataset	Metric	BERT	RoBERTa	BERT*	RoBERTa*	LLM+s _v	$LLM+s_v+s_{\mathcal{N}(v)}$	GraphTranslator
	Legality Rate (%)	100.00	100.00	100.00	100.00	50.10	55.57	58.80
Taobao	Accuracy (%)	34.73	33.10	32.97	34.53	33.46	34.59	35.33
(Lifestage)	Recall (%)	34.73	33.10	32.97	34.53	33.46	34.59	35.33
	Macro-F1 (%)	27.17	24.56	25.06	25.73	31.63	32.60	32.62
	Legality Rate (%)	100.00	100.00	100.00	100.00	31.20	45.43	98.97
Taobao	Accuracy (%)	51.13	50.87	49.03	48.77	51.92	58.55	50.99
(Cat Owner)	Recall (%)	87.40	60.40	63.27	11.73	12.82	45.56	95.69
	Macro-F1 (%)	43.73	50.42	47.98	40.62	21.05	<u>52.96</u>	66.14
	Legality Rate (%)	100.00	100.00	100.00	100.00	63.97	86.17	94.60
Taobao	Accuracy (%)	47.53	47.93	47.37	48.73	46.74	49.09	49.40
(Vehicle Owner)	Recall (%)	59.00	54.73	51.53	64.60	63.01	61.29	83.27
	Macro-F1 (%)	46.83	47.69	47.28	47.41	54.62	<u>55.15</u>	61.87
	Legality Rate(%)	100.00	100.00	100.00	100.00	99.15	99.40	97.8
ArXiv	Top-1 Acc (%)	1.63	3.55	14.53	6.95	14.07	<u>17.90</u>	28.48
	Top-3 Acc (%)	7.63	11.98	29.60	16.53	26.98	28.43	37.62
	Top-5 Acc (%)	28.00	22.93	38.30	23.75	42.46	37.99	<u>39.87</u>

Table 1: Results on zero-shot node classification.

Experiments

We conducted QA experiment in Taobao dataset. GraphTranslator captures the preferences of users and their friends more accurate.



Background

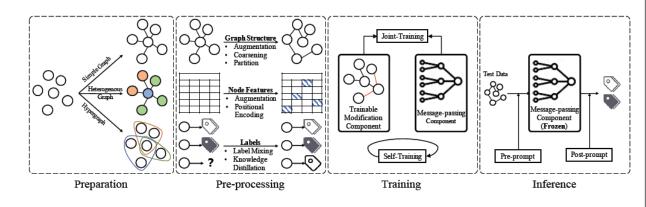
• Graph Foundation Model

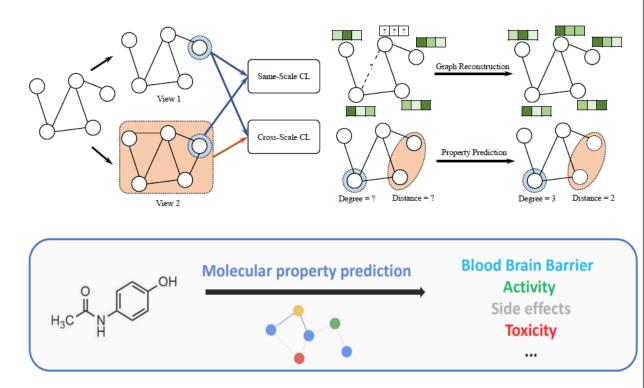
• Our Recent Attempts

• Future Directions

Future Directions

- 1. Data Quantity and Quality
 - Structure/Feature/Label Augmentation
 - Serialization for LLM-based Methods
- 2. Backbone and Learning Paradigm
 - Beyond the Transformer?
 - More Advanced Pretext Tasks
- 3. Application/Evaluation
 - Drug discovery, Urban Computing...
 - Human/AI Feedback
 - Safety/Privacy Issues





Open-source Graph Learning Platforms

OpenHGNN: The first heterogeneous graph neural network library

Models **Command Usage API Usage Benchmark &** Pre-Defined Models and Examples User-Defined Models Leaderboard **TrainerFlow** Message Passing Sampling Feature HeteroGraph Experiment Visualization Optimizer Preprocessing Sampler Logger Tools Message Reduce Update Mini-Batching Neighbor Sampling Function Function Function Model Task Negative Sampling Subgraph Sampling ops.segment_xxx OR ops.scatter_xxx **Design Space** for HGNN Models Loss Function Metrics Storage & Query Layers DGL Dataset Hyperparameter Transforms Graph/HeteroGraph/BatchGraph HeteroGraph Torch.nn DGL.nn Optimization Datasets **Deep Graph Library PvTorch** TensorFlow **PyTorch Backend** TensorLaver)

GammaGL: A GNN library supporting

multiple deep learning backends

Yaoqi Liu, Cheng Yang, Tianyu Zhao, Hui Han, Siyuan Zhang, Jing Wu, Guangyu Zhou, Hai Huang, Hui Wang, Chuan Shi. GammaGL: A Multi-Backend Library for Graph Neural Networks. SIGIR 2023 Han H, Zhao T, Yang C, et al. OpenHGNN: An Open Source Toolkit for Heterogeneous Graph Neural Network. CIKM 2022 Thanks Q&A